B.SC. THIRD SEMESTER (HONS.) EXAMINATION 2021

Subject: Mathematics
Course ID: 32114

Course Title: Algebra

Course Code: SH/MTH/304/GE-3

Full Marks: 40
Time: 2 hour

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

1. Answer any five of the following questions:
$(2 \times 5=10)$
a) Prove that $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1}$.
b) Prove that $\frac{(n+1)^{n}}{2^{n}}>n$!.
c) Show that the product of all values of $(\sqrt{3}+i)^{\frac{3}{5}}$ is $8 i$.
d) Apply Descartes' rule of sign to examine the nature of roots of the equation

$$
x^{4}-4 x^{3}+2 x^{2}+4 x+1=0
$$

e) What is the smallest equivalence relation on the set $A=\{a, b, c\}$.
f) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|+x$ is neither injective nor surjective.
g) Find the dimension of the subspace W of \mathbb{R}^{3} defined by $W=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+y-z=0\right\}$.
h) Use Cayley-Hamilton theorem to compute A^{2020}, where $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
2. Answer any four of the following questions:
(5x4=20)
a) If $(1+x)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, prove that
$a_{0}+a_{4}+a_{8}+\cdots=2^{n-2}+2^{\frac{n-2}{2}} \cos \frac{n \pi}{4}$.
b) If one root of the equation $x^{3}+a x+b=0$ is twice the difference of the other two, then prove that one root is $\frac{13 b}{3 a}$.
c) (i)Show that $1!\cdot 3!\cdot 5!\ldots(2 n-1)!>(n!)^{n}$.
(ii) Prove that the number of primes is infinite. $3+2$
d) Determine the conditions of a and b for which the system of equations has (i) only one solution, (ii) no solution, (iii) many solutions:

$$
\begin{gathered}
x+2 y+z=1 \\
2 x+y+3 z=b \\
x+a y+3 z=1+b .
\end{gathered}
$$

e) A mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by $T(x, y, z)=(x+y+z, 2 x+y+2 z, x+2 y+z),(x, y, z) \in \mathbb{R}^{3}$.
Show that T is a linear mapping. Find $\operatorname{Ker} T$ and the dimension of $\operatorname{Ker} T$.
f) Find the real eigen values (if any) and the corresponding eigen vectors of the matrix

$$
\left[\begin{array}{lll}
1 & -1 & 2 \\
2 & -2 & 4 \\
3 & -3 & 6
\end{array}\right]
$$

3. Answer any one of the following questions:
($1 \times 10=10$)
a) (i) Let z be a variable complex number such that the amplitude of $\frac{Z-i}{Z+1}$ is $\frac{\pi}{4}$. Show that the point z lies on a circle in the complex plane.
(ii) Prove that the product of any m consecutive integers is divisible by m.
(iii) Show that the mapping $f: S \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x}{1-|x|}$, where $S=(-1,1)$, is bijective.
b) (i) Prove that the eigen values of a real symmetric matrix are all real.
(ii) Determine the linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that maps the basis vectors
$(0,1,1),(1,0,1),(1,1,0)$ of \mathbb{R}^{3} to the vectors $(2,1,1),(1,2,1),(1,1,2)$ of \mathbb{R}^{3} respectively. Also find $\operatorname{Ker} T$ and $\operatorname{Im} T$.
